

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

Mapped Superclass
The mapped superclass strategy is the simplest approach to mapping
an inheritance structure to database tables. It maps each concrete
class to its own table.

That allows you to share the attribute definition between multiple
entities. But it also has a huge drawback. A mapped superclass is not
an entity, and there is no table for it.

That means that you can’t use polymorphic queries that select all
Publication entities and you also can’t define a relationship between
an Author entity and all Publications.

If you just want to share state and mapping information between
your entities, the mapped superclass strategy is a good fit and easy to
implement. You just have to set up your inheritance structure,
annotate the mapping information for all attributes and add the
@MappedSuperclass annotation to your superclass.

The subclasses Book and BlogPost extend the Publication class and
add their specific attributes with their mapping annotations. Both
classes are also annotated with @Entity and will be managed by the
persistence provider.

@MappedSuperclass

public abstract class Publication {…}

@Entity(name = “Book”)

public class Book extends Publication {…}

@Entity(name = “BlogPost”)

public class BlogPost extends Publication {…}

http://www.thoughts-on-java.org/

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

Table per Class
The table per class strategy is similar to the mapped superclass
strategy. The main difference is that the superclass is now also an
entity. Each of the concrete classes gets still mapped to its own
database table. This mapping allows you to use polymorphic queries
and to define relationships to the superclass. But the table structure
adds a lot of complexity to polymorphic queries, and you should
avoid them.

The definition of the superclass with the table per class strategy
looks similar to any other entity definition. You annotate the class
with @Entity and add your mapping annotations to the attributes.
The only difference is the additional @Inheritance annotation which
you have to add to the class to define the inheritance strategy. In this
case, it’s the InheritanceType.TABLE_PER_CLASS.

The definitions of the Book and BlogPost entities are identical to the
previously discussed mapped superclass strategy. You just have to
extend the Publication class, add the @Entity annotation and add the
class specific attributes with their mapping annotations.

@Entity

@Inheritance(strategy =

InheritanceType.TABLE_PER_CLASS)

public abstract class Publication {…}

http://www.thoughts-on-java.org/

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

Single Table
The single table strategy maps all entities of the inheritance
structure to the same database table. This approach makes
polymorphic queries very efficient and provides the best
performance.

But it also has some drawbacks. The attributes of all entities are
mapped to the same database table. Each record uses only a subset
of the available columns and sets the rest of them to null. You can,
therefore, not use not null constraints on any column that isn’t
mapped to all entities. That can create data integrity issues, and your
database administrator might not be too happy about it.

When you persist all entities in the same table, Hibernate needs a
way to determine the entity class each record represents. This is
information is stored in a discriminator column which is not an entity
attribute. You can either define the column name with a
@DiscriminatorColumn annotation on the superclass or Hibernate
will use DTYPE as its default name.

@Entity(name = “Book”)

public class Book extends Publication {…}

@Entity(name = “BlogPost”)

public class BlogPost extends Publication {…}

http://www.thoughts-on-java.org/

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

The definition of the subclasses is again similar to the previous
examples. But this time, you should also provide a
@DiscriminatorValue annotation. It specifies the discriminator value
for this specific entity class so that your persistence provider can
map each database record to a concrete entity class.

Joined
The joined table approach maps each class of the inheritance
hierarchy to its own database table. This sounds similar to the table
per class strategy. But this time, also the abstract superclass
Publication gets mapped to a database table. This table contains
columns for all shared entity attributes. The tables of the subclasses
are much smaller than in the table per class strategy. They hold only
the columns specific for the mapped entity class and a primary key
with the same value as the record in the table of the superclass.

@Entity

@Inheritance(strategy = InheritanceType.SINGLE_TABLE)

@DiscriminatorColumn(name = “Publication_Type”)

public abstract class Publication {…}

@Entity(name = “Book”)

@DiscriminatorValue(“Book”)

public class Book extends Publication {…}

@Entity(name = “BlogPost”)

@DiscriminatorValue(“Blog”)

public class BlogPost extends Publication {…}

http://www.thoughts-on-java.org/

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

Each query of a subclass requires a join of the 2 tables to select the
columns of all entity attributes. That increases the complexity of
each query, but it also allows you to use not null constraints on
subclass attributes and to ensure data integrity. The definition of the
superclass Publication is similar to the previous examples. The only
difference is the value of the inheritance strategy which is
InheritanceType.JOINED.

The definition of the subclasses doesn’t require any additional
annotations. They just extend the superclass, provide an @Entity
annotation and define the mapping of their specific attributes.

@Entity

@Inheritance(strategy = InheritanceType.JOINED)

public abstract class Publication {…}

@Entity(name = “Book”)

public class Book extends Publication {…}

@Entity(name = “BlogPost”)

public class BlogPost extends Publication {…}

http://www.thoughts-on-java.org/

Inheritance strategies with JPA and Hibernate

www.thoughts-on-java.org

Choosing a Strategy
Choosing the right inheritance strategy is not an easy task. As so
often, you have to decide which advantages you need and which
drawback you can accept for your application. Here are a few
recommendations:

 If you require the best performance and need to use
polymorphic queries and relationships, you should choose the
single table strategy. But be aware, that you can’t use not null
constraints on subclass attributes which increase the risk of
data inconsistencies.

 If data consistency is more important than performance and
you need polymorphic queries and relationships, the joined
strategy is probably your best option.

 If you don’t need polymorphic queries or relationships, the
table per class strategy is most likely the best fit. It allows you
to use constraints to ensure data consistency and provides an
option of polymorphic queries. But keep in mind, that
polymorphic queries are very complex for this table structure
and that you should avoid them.

http://www.thoughts-on-java.org/

